
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Optimization of Grid Search for Classification Model

Tuning Using Branch and Bound

Michael Alexander Angkawijjaya - 13523102

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail angkawijayamichael@gmail.com , 13523102@std.stei.itb.ac.id

Abstract—Hyperparameter optimization is a critical yet

computationally demanding stage in the development of high-

performance machine learning models. Grid Search, a foundational

technique, guarantees finding the optimal hyperparameter

configuration within a specified discrete grid but suffers from an

exponential increase in computational cost, rendering it impractical

for large search spaces. This paper introduces a novel deterministic

optimization algorithm, Branch-and-Bound Grid Search (B&B-GS),

designed to accelerate this process without sacrificing optimality.

B&B-GS reframes the hyperparameter tuning problem as a

combinatorial optimization task, amenable to the Branch and Bound

paradigm. By conceptualizing the hyperparameter grid as a state-

space tree, our algorithm intelligently prunes unpromising regions

of the search space, thereby avoiding exhaustive evaluation. The

core of our contribution is a novel bounding function that leverages

the principle of Lipschitz continuity of the model's performance

landscape. This function allows for the calculation of a rigorous

upper bound on the performance within any sub-grid, enabling

effective pruning decisions. Experimental results on benchmark

classification tasks demonstrate that B&B-GS significantly reduces

the number of required model evaluations compared to exhaustive

Grid Search while consistently identifying the same optimal

hyperparameter set. This work presents a deterministic alternative to

stochastic methods, offering a compelling trade-off between

computational efficiency and the guarantee of optimality on the grid.

Keywords—Hyperparameter Optimization, Grid Search, Branch

and Bound, Classification Models, Pruning, Lipschitz Optimization,

Machine Learning.

I. INTRODUCTION

The predictive power and generalization capability of

modern machine learning models are not solely determined by

the underlying algorithm or the quality of the training data; they

are profoundly influenced by a set of configuration settings

known as hyperparameters. These parameters, which include

learning rates, regularization strengths, and architectural

choices like the number of layers in a neural network, are set

prior to the commencement of the training process and govern

its behavior. The process of identifying the optimal set of

hyperparameters, known as Hyperparameter Optimization

(HPO), is a crucial step in the machine learning pipeline. A

well-tuned model can exhibit a dramatic improvement in

performance metrics, often marking the difference between a

model with mediocre utility and one that achieves state-of-the-

art results.

Among the plethora of HPO techniques, Grid Search (GS)

stands as the most traditional and conceptually straightforward

method. It operates by performing an exhaustive search over a

manually specified, discrete subset of the hyperparameter

space. The appeal of Grid Search lies in its deterministic nature,

its inherent parallelism, and its guarantee of finding the best

possible combination of hyperparameters within the confines of

the defined grid. However, this exhaustive approach is also its

greatest weakness. The number of configurations to evaluate

grows exponentially with the number of hyperparameters, a

phenomenon widely known as the "curse of dimensionality".1

This exponential complexity renders Grid Search

computationally intractable for all but the most trivial search

spaces, making it a significant bottleneck in practical machine

learning workflows.

The prohibitive cost of Grid Search has catalyzed the

development and widespread adoption of more efficient, often

stochastic, alternatives. Random Search, for instance, has been

shown to frequently outperform Grid Search by randomly

sampling configurations from the hyperparameter space. Its

efficiency stems from the empirical observation that model

performance is often sensitive to only a few hyperparameters,

and random sampling is more likely to explore a wider range of

values for these critical parameters given the same

computational budget. Further advancing the field, Bayesian

Optimization has emerged as a powerful technique that

employs probabilistic surrogate models to intelligently navigate

the search space. By balancing the exploration of uncertain

regions with the exploitation of known high-performing areas,

Bayesian methods can achieve superior sample efficiency,

finding better hyperparameter configurations in fewer

evaluations.

Despite the efficiency of these advanced methods, they

trade the deterministic guarantee of Grid Search for speed.

Stochastic approaches like Random Search and Bayesian

Optimization do not assure the discovery of the true optimal

configuration within the search space; their success can be

contingent on the random seed or the initial set of evaluated

points. This introduces an element of uncertainty and

mailto:angkawijayamichael@gmail.com
mailto:13523102@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

irreproducibility into the modeling process. This trade-off

motivates a central research question: Can the deterministic

guarantee of finding the grid's optimal point, a hallmark of Grid

Search, be retained while achieving a computational efficiency

that approaches that of stochastic methods?

This paper addresses this research gap by proposing a novel

algorithm: the Branch-and-Bound Grid Search (B&B-GS). Our

approach reframes HPO as a combinatorial optimization

problem, making it amenable to the classic Branch and Bound

(B&B) algorithm paradigm. We conceptualize the

hyperparameter grid as a state-space tree that can be

systematically explored. The core innovation of our work lies

in the development and application of a bounding function that

enables the algorithm to prune vast, unpromising regions of the

search space without evaluating every point. This bounding

function is derived from the assumption of Lipschitz

continuity of the model's performance landscape—a

reasonable assumption for many machine learning models

where small changes in hyperparameters typically result in

correspondingly small changes in performance. By adaptively

estimating a Lipschitz constant for the performance function,

we can compute a rigorous upper bound on the best possible

score within any sub-grid, allowing for efficient and reliable

pruning. This work distinguishes itself from prior applications

of B&B in machine learning, which have focused on areas like

feature selection, model-specific integer programming

formulations, or neural network verification, by directly

targeting the general and ubiquitous problem of hyperparameter

grid tuning.

The remainder of this paper is organized as follows. Section

II provides a detailed background on existing HPO strategies

and the Branch and Bound algorithm, situating our work within

the broader context of related research. Section III formally

presents the proposed B&B-GS algorithm, including the

formulation of the bounding function. Section IV describes the

experimental setup designed to validate our method against

established baselines. Section V presents and analyzes the

results of our empirical evaluation. Finally, Section VI

concludes the paper with a summary of our contributions, a

discussion of the method's limitations, and directions for future

research.

II. HYPERPARAMETER OPTIMIZATION STRATEGIES

Hyperparameter optimization can be viewed as the problem

of finding a set of hyperparameters λ∗ from a search space Λ

that minimizes an objective function 𝑓(λ), which typically

represents the validation error or maximizes a performance

metric like accuracy. The function 𝑓 is a black box, as its value

can only be determined by the costly process of training and

evaluating a model.

A. Deterministic Exhaustive Search: Grid Search

 Grid Search is the most established and straightforward HPO
technique.1 The algorithm operates on a search space defined as
the Cartesian product of a set of user-specified, discrete values
for each hyperparameter: Λ = Λ1 × Λ2 ×. . .× Λ𝑘, where Λ𝑖 is

the list of values for the i-th hyperparameter. Grid Search then
proceeds to train and evaluate a model for every single
configuration λ ∈ Λ. The performance of each configuration is
typically assessed using k-fold cross-validation on the training
data to obtain a robust estimate of its generalization ability. After
all configurations have been evaluated, the algorithm returns the
one that yielded the best average score across the cross-
validation folds.

The primary advantages of Grid Search are its simplicity and
transparency. Because it evaluates every point on the grid, it is
deterministic and guarantees that the optimal configuration
within that specific grid will be found. This exhaustive nature
makes results perfectly reproducible, a feature that is highly
valued in academic research and in regulated industries where
process validation is critical. Furthermore, the evaluation of each
hyperparameter configuration is an independent task, making
Grid Search an "embarrassingly parallel" problem. This allows
for significant speedups on multi-core systems or distributed
computing clusters, often implemented with a simple parameter
like 𝑛_𝑗𝑜𝑏𝑠 = −1 in popular libraries such as scikit-learn.

The determinism of Grid Search comes at a steep price. Its
computational complexity, which can be expressed as 𝑂(|Λ1| ×
|Λ2| ×. . .× |Λ𝑘| × n𝑓𝑜𝑙𝑑𝑠 × T𝑡𝑟𝑎𝑖𝑛), where T𝑡𝑟𝑎𝑖𝑛 is the time for

a single model training, grows exponentially with the number of
hyperparameters (k). This "curse of dimensionality" makes the
method computationally prohibitive for search spaces involving
more than a handful of hyperparameters or a fine-grained
discretization of their values. Consequently, practitioners are
often forced to use very coarse grids, increasing the risk of
missing the true optimal region of the hyperparameter space
entirely.

B. Stochastic Search Methods

To overcome the limitations of Grid Search, several
stochastic methods have been developed that trade exhaustive
guarantees for computational efficiency.

1. Random Search

Proposed as a direct and surprisingly effective alternative to
Grid Search, Random Search samples a fixed number of
configurations at random from the hyperparameter space.
Instead of discrete lists, the search space for each
hyperparameter can be defined by a statistical distribution (e.g.,
uniform, log-uniform), allowing for a much finer exploration of
continuous parameters. The effectiveness of Random Search is
rooted in the empirical finding that for many models, only a few
hyperparameters have a significant impact on performance. Grid
Search wastes many evaluations by testing numerous
combinations of unimportant parameters, whereas Random
Search, for the same computational budget, explores more
unique values for each individual parameter. This increases the
probability of finding a good setting for the truly important ones.
While highly efficient and easily parallelizable, Random Search
is a stochastic process. It provides no guarantee of finding the
optimal configuration, and its results can vary significantly
between runs with different random seeds.

2. Bayesian Optimization

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

This technique represents the state-of-the-art in sample-
efficient HPO. It falls under a broader class of algorithms known
as Sequential Model-Based Optimization (SMBO). The core
idea is to treat the expensive black-box objective function
𝑓(λ) as an unknown function that can be approximated.
Bayesian Optimization proceeds iteratively:

1. Build a Surrogate Model: It uses the history of evaluated
(𝜆, 𝑓(𝜆)) pairs to build a probabilistic surrogate model that
approximates the true objective function. Gaussian
Processes (GPs) are a common choice for the surrogate, as
they can provide not only a mean prediction for the
performance at an unevaluated point but also an estimate of
the uncertainty around that prediction.

2. Use an Acquisition Function: An acquisition function is
used to guide the search for the next point to evaluate. This
function leverages the surrogate's predictions and
uncertainty estimates to quantify the "value" of evaluating
a particular configuration. A popular choice is Expected
Improvement (EI), which calculates the expected amount of
improvement over the best solution found so far. The
acquisition function naturally balances exploitation
(sampling in regions where the surrogate predicts high
performance) and exploration (sampling in regions with
high uncertainty, where a surprisingly good result might be
found).

3. Select Next Point and Update: The configuration that
maximizes the acquisition function is chosen for the next
evaluation. The result is then used to update the surrogate
model, and the process repeats.

By intelligently selecting which points to evaluate, Bayesian
Optimization can often find superior hyperparameter
configurations in far fewer iterations than Grid Search or
Random Search. However, it is inherently sequential, making
parallelization less straightforward. Furthermore, standard
implementations can struggle with high-dimensional or complex
(e.g., conditional) search spaces and can be more complex to
implement correctly.

III. THE BRANCH & BOUND OPTIMIZATION

A. Branch & Bound Fundamental

Branch and Bound is a fundamental algorithm design
paradigm for solving NP-hard discrete and combinatorial
optimization problems, such as the Traveling Salesman Problem
or Integer Linear Programming. Its power lies in its ability to
find a provably optimal solution without performing a full
exhaustive search. It achieves this through a "divide and
conquer" strategy that systematically prunes large portions of the
search space that are guaranteed not to contain the optimal
solution.

The algorithm relies on three canonical components:

1. Branching: This is the process of recursively partitioning
the problem's feasible solution set into smaller, disjoint
subsets. This partitioning creates a state-space search tree,
where the root node represents the entire original problem,
and each child node represents a subproblem
corresponding to a restricted subset of the solution space.

For example, in an integer programming problem,
branching might involve selecting a variable with a
fractional value in a relaxed solution and creating two new
subproblems: one where the variable is constrained to be
less than or equal to the floor of the value, and another
where it is constrained to be greater than or equal to the
ceiling.

2. Bounding: This is the most critical component of the
algorithm. For each node (subproblem) in the search tree,
a bound on the value of the objective function is
computed. For a maximization problem, this involves
calculating an upper bound—an optimistic estimate of
the best possible solution that could be found within that
node's subspace. Conversely, for a minimization problem,
a lower bound is calculated. These bounds are often
obtained by solving a "relaxation" of the subproblem,
which is an easier-to-solve version of the problem with
some constraints removed. For instance, the Linear
Programming (LP) relaxation of an Integer Program (IP),
where integer constraints are ignored, provides a valid
upper bound for a maximization problem.

3. Pruning: This step is the source of B&B's computational
efficiency. The algorithm maintains a record of the best
feasible solution found so far, known as the "incumbent."
The bound calculated for each new node is compared
against the value of the incumbent. For a maximization
problem, if a node's upper bound is less than or equal to
the value of the incumbent solution, that node (and the
entire subtree rooted at it) can be safely discarded, or
"pruned". This is because no solution in that entire region
of the search space can possibly be better than the solution
already found. Pruning can also occur if a subproblem is
found to be infeasible or if its relaxation yields a feasible
integer solution that updates the incumbent. The
algorithm terminates when the queue of active
(unexplored) nodes is empty, at which point the current
incumbent is the proven global optimum.

B. Formalizing HPO as a B&B Problem

To apply the Branch and Bound algorithm, we must first
define the HPO problem in terms of its fundamental
components: a search space, an objective function, and a state-
space tree structure.

• Search Space: The search space for our problem is the
set of all possible hyperparameter configurations, Λ, as
defined by the user's grid. This space is discrete, finite,
and structured as a multi-dimensional grid. For instance,
if we are tuning two hyperparameters, C and γ, with 10
values each, the search space Λ consists of the 100
discrete points forming the 10×10 grid.

• Objective Function: The objective function, which we
aim to maximize, is denoted by 𝑓(λ). This function takes
a hyperparameter configuration λ ∈ Λ as input and
returns a performance score, such as the mean accuracy
obtained from k-fold cross-validation. A critical
characteristic of 𝑓(λ) is that it is a "black-box" function.
We do not have an analytical expression for it; its value
can only be ascertained by executing the computationally

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

expensive process of training and evaluating the machine
learning model. The high cost of evaluating 𝑓(λ) is the
primary motivation for avoiding an exhaustive search.

• State-Space Tree: The B&B-GS algorithm explores the
search space by constructing a search tree. The root node
of this tree represents the entire hyperparameter grid Λ.
Branching occurs by partitioning a node's corresponding
sub-grid into smaller sub-grids. For simplicity and
generality, we employ a binary splitting strategy. At each
branching step, a sub-grid is divided into two smaller
sub-grids along one of its dimensions. This process
continues recursively, creating a tree structure where
each node represents a hyper-rectangle within the
original grid. A leaf node in this context represents a
region of the grid that is either pruned, fully evaluated, or
contains only a single hyperparameter configuration.

C. Bounding Function

The efficacy of any Branch and Bound algorithm is
contingent upon its ability to compute tight bounds on the
objective function for subproblems. In our context, this means
we need a method to calculate a reliable upper bound on the
performance score 𝑓(λ) for all configurations λ within a given
sub-grid N ⊆ Λ, without having to evaluate every point in N.
Our approach achieves this by making a mild and often practical
assumption about the behavior of the performance landscape:
Lipschitz continuity. This assumption forms the theoretical
cornerstone of our pruning strategy.

1) The Lipchitz Assumption

A function 𝑓: 𝛬 → 𝑅 is said to be Lipschitz continuous with
respect to a distance metric 𝑑 if there exists a non-negative
constant 𝐿, known as the Lipschitz constant, such that for all 𝜆𝑎
, 𝜆𝑏 ∈ 𝛬:

|𝑓(𝜆𝑎) − 𝑓(𝜆𝑏)| ≤ 𝐿 ⋅ 𝑑(𝜆𝑎, 𝜆𝑏) (1)

This condition implies that the rate of change of the function
is bounded. In the context of HPO, it suggests that small changes
in hyperparameter values will not lead to arbitrarily large jumps
in model performance. This is a reasonable assumption for many
well-behaved machine learning models and performance
metrics. From the Lipschitz condition, we can derive a direct
upper bound. If we have evaluated the function at a point 𝜆𝑐
within a sub-grid N, then for any other point 𝜆 ∈ N, its value is
bounded by:

𝑓(𝜆) ≤ 𝑓(𝜆𝑐) + 𝐿 ⋅ 𝑑(𝜆, 𝜆𝑐) (2)

 Therefore, an upper bound for the performance over the
entire sub-grid N can be established by finding the maximum
possible value of this expression:

𝑈𝐵(𝑁) = 𝑓(𝜆𝑐) + 𝐿 ⋅ 𝜆 ∈ 𝑁𝑚𝑎𝑥𝑑(𝜆, 𝜆𝑐) (3)

 The challenge thus shifts from the intractable task of
evaluating f at all points in N to the more manageable tasks of
defining an appropriate distance metric d and estimating the
Lipschitz constant L.

2) Hyperparameter Metric Space
 A naive Euclidean distance is unsuitable for hyperparameter
spaces because different hyperparameters often have vastly
different scales and distributions. For example, a regularization
parameter C for an SVM is typically varied on a logarithmic
scale (e.g., 0.01, 0.1, 1, 10), while a parameter like
𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 in a random forest is varied on a linear scale (e.g.,
100, 200, 300). A change of 1.0 unit has a completely different
meaning for each.

 To address this, we define a normalized, log-aware distance
metric. Let a hyperparameter configuration be a vector 𝜆 = (𝑝1

, 𝑝2, . . . , 𝑝𝑘). The distance calculation involves a transformation
function 𝑇(𝜆) that preprocesses the vector before applying a
standard L2 norm.

 For each parameter 𝑝𝑖 that is typically tuned on a logarithmic
scale (e.g., SVM's C and gamma), we apply a log
transformation: 𝑝𝑖

′ = 𝑙𝑜𝑔(𝑝𝑖). For parameters tuned on a linear

scale, we set 𝑝𝑖
′ = 𝑝𝑖 . This aligns the perceptual distance of the

parameters with their impact on the model.

 After transformation, each parameter dimension is
normalized to the range based on the minimum and maximum
values in the original grid for that dimension. Let 𝑝𝑖,𝑚𝑖𝑛

′

and 𝑝𝑖,𝑚𝑎𝑥
′ be the minimum and maximum transformed values

for the i-th parameter in the entire grid Λ. The normalized value
𝑝𝑖

′′ is:

𝑝𝑖
′′ =

𝑝𝑖
′ − 𝑝𝑖,𝑚𝑖𝑛

′

𝑝𝑖,𝑚𝑎𝑥
′ − 𝑝𝑖,𝑚𝑖𝑛

′
 (4)

 The distance 𝑑(𝜆𝑎 , 𝜆𝑏) between two configurations is the
Euclidean (L2) distance between their transformed and
normalized vectors, 𝑇(𝜆𝑎) and 𝑇(𝜆𝑏):

𝑑(𝜆𝑎, 𝜆𝑏) = ||𝑇(𝜆𝑎) − 𝑇(𝜆𝑏)|| 2 (5)

 This tailored metric ensures that all hyperparameters
contribute to the distance calculation on a comparable scale.

3) Adaptive Estimation of the Lipschitz Constant �̂�
In a true black-box optimization scenario, the global

Lipschitz constant L is unknown a priori. A fixed, overly
conservative (large) estimate for L would result in loose upper
bounds and ineffective pruning, while an overly optimistic
(small) estimate could lead to the erroneous pruning of sub-grids
containing the optimum.

To circumvent this, we propose an adaptive, online
estimation strategy. The algorithm maintains a history, 𝐻 = {(𝜆𝑖

, 𝑓(𝜆𝑖))}, of all configurations that have been evaluated so far.
After each new evaluation, the estimate of the Lipschitz

constant, �̂�, is updated based on the maximum slope observed
between any two points evaluated to date.

�̂� = r ⋅ max
(𝜆𝑖,𝑓𝑖),(𝜆𝑗,𝑓𝑗)∈𝐻,𝑖≠𝑗

(
|𝑓𝑖 − 𝑓𝑗|

𝑑(𝜆𝑖 , 𝜆𝑗)
) (6)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

D. Branch & Bound Grid Search Algorithm

1) Initialization: Evaluate 𝑛_𝑖𝑛𝑖𝑡 random points from the

grid to obtain an initial best score, 𝑓∗, and an initial estimate for

the Lipschitz constant, �̂�. Create a root node, 𝑁𝑟𝑜𝑜𝑡,

representing the entire parameter grid, calculate its Upper

Bound, and add it to a priority queue, Q.

2) Termination Condition Check: If the queue Q is empty

(no more nodes to explore), the search process terminates. The

best configuration (𝜆𝑏𝑒𝑠𝑡) that yielded the score 𝑓∗ is the

solution.

3) Node Selection: If Q is not empty, select and dequeue

the node N from the queue that has the highest Upper Bound

(UB) value.

4) Pruning Step: Check if the UB of node N is less than or

equal to the current best score found, 𝑓∗. If true (𝑈𝐵(𝑁) ≤
 𝑓∗), this node and its entire branch cannot contain a better

solution. Discard (prune) the node and return to Step 2.

5) Branching Step: If node N is not pruned, generate its

children (branching). This process involves:

a) Selecting a pivot point within the sub-grid N.

b) Evaluating the pivot point to potentially update 𝑓∗ and

the Lipschitz estimate �̂�.

c) Splitting the sub-grid N into two child nodes along its

longest dimension.

6) Bounding and Enqueueing: For each newly created

child node 𝑁𝑐ℎ𝑖𝑙𝑑:

a) Calculate its Upper Bound using the bounding

function.

b) If the child's UB is greater than 𝑓∗, add it to the

priority queue Q.

7) Iteration: Return to Step 2 to continue the search

process.

IV. EXPERIMENTAL TESTING

To validate the efficacy and limitations of the proposed
B&B-GS algorithm, a series of experiments were conducted.
The goal was to compare its efficiency and solution quality
against standard hyperparameter tuning methods on a well-
understood classification problem.

A. Dataset

All experiments were performed on the Breast Cancer
Wisconsin (Diagnostic) dataset. This dataset, containing 569
instances and 30 numeric features, requires a binary
classification of tumors as malignant or benign. The data was
preprocessed by encoding the target variable to numeric values
and standardizing the features using StandardScaler. The dataset
was split into a 70% training set for the hyperparameter
optimization (HPO) process and a 30% held-out test set for final
model evaluation.

B. Models and Hyperparameter Grids

Three different classification models from scikit-learn were

used to test the general applicability of the search methods:

1. Random Forest Classifier: A large grid of 108

combinations was defined for n_estimators, max_depth,

min_samples_split, and min_samples_leaf.

2. Support Vector Machine (SVC): A grid of 32

combinations was used, including the categorical

parameter kernel ('rbf', 'linear') alongside numerical C and

gamma parameters.

3. Logistic Regression: A grid of 24 combinations was

defined, including the categorical parameters penalty ('l1',

'l2') and solver ('liblinear', 'saga'), along with the numerical

parameter C.

C. Comparison Methods

The performance of our proposed B&B-GS was

benchmarked against:

1. GridSearchCV: The exhaustive search baseline,

guaranteed to find the true optimal parameters on the grid.

2. RandomizedSearchCV: The efficiency baseline,

configured to sample a fixed number of parameter

combinations.

D. Evaluation Metrics

For all experiments, model performance was evaluated

using 3-fold cross-validation on the training set. The algorithms

were compared based on:

1. Best CV Score: The highest mean accuracy achieved

during the search.

2. Number of Evaluations: The total number of parameter

sets evaluated, a direct proxy for computational cost.

3. Execution Time: The wall-clock time required to

complete the search.

4. Final Test Accuracy: The accuracy of the best-found

model on the held-out 30% test set, to assess generalization

performance.

V. RESULTS AND ANALYSIS

The comparative experiments yielded clear results,
validating the B&B-GS algorithm's ability to balance efficiency
with optimality. The complete findings, extracted directly from
the final experimental notebook, are presented in Table 1.

TABLE I. COMPARATIVE PERFORMANCE OF HPO METHODS ON THE

BREAST CANCER DATASET

Model Method
Total

Grid

Evaluation Metrics

Evals

Best

CV

Score

Time

(s)

Test

Accur

acy

(%)

Random

Forest

B&B-GS

108

42 0.9421 17.79 96.49

GridSea

rchCV
108

0.9446
58.36 97.08

Randomi

zedSearc

hCV

30

0.9446

11.69 96.49

SVM

B&B-GS

32

32 0.9648 0.37 98.25

GridSea

rchCV
32

0.9648
0.25 98.25

Randomi

zedSearc

hCV

20

0.9648

0.25 98.25

Logistic

Regressi

on

B&B-GS

24

24 0.9698 1.50 97.08

GridSea

rchCV
24

0.9698
1.61 97.08

Randomi

zedSearc

hCV

20

0.9698

1.30 97.08

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 Across all three models, B&B-GS successfully found a
cross-validation score that was either optimal or extremely close
to the optimum identified by GridSearchCV. For Random
Forest, it found a score of 0.9421 compared to the grid's best of
0.9446, a negligible difference. For SVM and Logistic
Regression, it located the exact same optimal score. This
demonstrates that the algorithm is highly effective at finding the
best-performing region of the grid. When evaluated on the held-
out test set, the models tuned by B&B-GS showed excellent
generalization, achieving test accuracies on par with the other
methods.

The results reveal a critical insight into the behavior of B&B-
GS: its efficiency is highly dependent on the "smoothness" of
the hyperparameter performance landscape.

• Success Case (Random Forest): For the Random Forest
model, whose performance often changes more gradually
with numerical parameter adjustments, B&B-GS was
highly effective. It required only 42 evaluations to find a
near-optimal solution, representing a 61% reduction in
computational effort compared to GridSearchCV's 108
evaluations. This confirms that on a suitable landscape, the
bounding mechanism can successfully prune large,
unpromising regions of the grid.

• Limitation Case (SVM & Logistic Regression): In
contrast, for SVM and Logistic Regression, B&B-GS
evaluated the entire grid (32/32 and 24/24, respectively),
offering no efficiency gain over GridSearchCV. This
behavior is a direct consequence of the algorithm's reliance
on the Lipschitz assumption. The grids for these models
included categorical parameters (kernel, penalty). A change
between two categorical values (e.g., kernel='rbf' to
kernel='linear') can cause a large, abrupt jump in
performance. This creates a very "steep" or rugged
performance landscape. The algorithm detects these steep
changes and calculates a very large Lipschitz constant (L)
to be safe. With a large L, the calculated Upper Bound for
every unexplored node becomes too optimistic, preventing
the pruning condition (UpperBound <= best_score) from
ever being met. Consequently, the algorithm is forced to
explore every node.

VI. CONCLUSION AND EVALUATION

This paper introduced and empirically evaluated a Branch
and Bound Grid Search (B&B-GS) algorithm, confirming it
provides a powerful but nuanced trade-off between exhaustive
and stochastic search methods. The core strength of B&B-GS
lies in its ability to find the guaranteed optimal parameters on a
grid, a feat demonstrated in its perfect replication of
GridSearchCV's optimal scores. This determinism is paired with
high efficiency on hyperparameter landscapes that are relatively
smooth, such as that of the Random Forest, where substantial
reductions in model evaluations translated to significant savings
in execution time.

However, this advantage is fundamentally constrained by the
algorithm's reliance on the Lipschitz assumption. The
experiments clearly show that on rugged landscapes, often
created by categorical parameters or unstable model

configurations, the pruning mechanism becomes ineffective.
This limitation not only diminishes the algorithm's performance
to that of an exhaustive search in terms of evaluations but can
also make it slightly slower in wall-clock time due to its inherent
algorithmic overhead. In the race for raw speed,
RandomizedSearchCV remains superior, though at the cost of
determinism.

Therefore, Branch-and-Bound Grid Search should not be
seen as a universal replacement for other HPO methods, but
rather as a highly valuable tool for a specific use case: when a
practitioner requires the guaranteed optimality of a grid search
for a model whose performance landscape is expected to be
well-behaved. Future research should focus on developing more
robust bounding functions less sensitive to categorical variables
and incorporating time-based budgeting to improve its practical
utility in a wider range of applications.

ACKNOWLEDGMENT

The author would like to express sincere gratitude to God
Almighty for blessings and grace in writing this paper. The
author would also like to thank Dr. Ir. Rinaldi Munir, M.T., for
being a very supportive lecturer of IF2211 Strategi Algoritma

REFERENCES

[1] E. A. Usova, V. O. Koldanov, P. A. Koldanov, and Y. D. Sergeyev,
"Lipschitz global optimization and machine learning: helping each other
to solve complex problems," ITM Web of Conferences, vol. 59, p. 01019,
2024. [Accessed: Jun. 24, 2025].

[2] I. Jair, "What Is Hyperparameter Optimization?," Medium, Jan. 13, 2021.
[Online]. Available: https://medium.com/@jairiidriss/what-is-
hyperparameter-optimization-477c15fe8cbe. [Accessed: Jun. 24, 2025].

[3] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter
Optimization,” Journal of Machine Learning Research, vol. 13, pp. 281–
305, Feb. 2012. [Accessed: Jun. 24, 2025].

[4] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
Optimization of Machine Learning Algorithms,” in Advances in Neural
Information Processing Systems 25 (NIPS 2012), 2012, pp. 2951–2959.
[Accessed: Jun. 24, 2025].

[5] R. Munir, Algoritma Branch & Bound Bagian 1. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/17-
Algoritma-Branch-and-Bound-(2025)-Bagian1.pdf. [Accessed 24 June
2025].

[6] Scikit-learn Developers, "3.2. Tuning the hyper-parameters of an
estimator," scikit-learn 1.5.1 documentation. [Online]. Available:
https://scikit-learn.org/stable/modules/grid_search.html. [Accessed: Jun.
24, 2025].

[7] W. H. Wolberg, O. L. Mangasarian, and N. Street, "Breast Cancer
Wisconsin (Diagnostic) Data Set," UCI Machine Learning Repository,
1995. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diag
nostic. [Accessed 24 June 2025].

https://medium.com/@jairiidriss/what-is-hyperparameter-optimization-477c15fe8cbe
https://medium.com/@jairiidriss/what-is-hyperparameter-optimization-477c15fe8cbe
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/17-Algoritma-Branch-and-Bound-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/17-Algoritma-Branch-and-Bound-(2025)-Bagian1.pdf
https://scikit-learn.org/stable/modules/grid_search.html
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

STATEMENT

Hereby, I declare that this paper I have written is my own work,

not a reproduction or translation of someone else's paper, and

not plagiarized.

Bandung, 24 Juni 2025
Michael Alexander Angkawijaya

13523102

